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Abstract: We study the air ticket inventory competition of two flights and two levels of air ticket 
price for each flight.Each flight has a fixed initial capacity and prices andcompetes in setting the 
optimal stopping region to maximize the total expected revenue over a finite sales horizon. 
Customers are divided into three types according to their desire. The choice behavior can be 
described as a horizontal diversion and vertical diversion of demand; the choice probability depends 
on the current prices. Assuming the arrival process is homogeneous Poisson distribution, we 
presented the seat allocation model and found that Nash equilibrium was applicable in the allocation 
model. The optimal policy derived is a threshold policy, which simplified the model and improved 
computational efficiency. Numerical experiments describe the application of the model in the real 
world and the strong linkage between the threshold, rival’s strategy and ratio of different 
passengers.  

1. Introduction  
Revenue management (RM) is an effective means of increasing revenue for airlines. 

Feldman(1991)[i] has pointed out that the use of revenue management system will increase by 2 % – 
7 % of the revenues. It can help airlines set the right price and right number seats at the right time 
forthe right customers to maximize revenue. Nevertheless, traditional RM models usually assume 
an industry monopoly, which does not work effectively in reality. See the airline flight schedules in 
Table 1, CA, CZ and MU schedule flights between Shanghai and Beijing, nearly the same times, 
aircraft and even the price for advance-purchase tickets.Direct competition encourages airlines to 
review their RM policy: during decision-making, they should take not only their own demand and 
capacity into account but also the response from their rivals, especially the influence of their rivals 
on seat allocation. 

Table 1. Flight Schedule for Airlines from Shanghai to Beijing, March 20, 2018 

Airline Flight  Aircraft Departure Price 
CA 1590 Airbus 330  8:55 810 
MU 5103 Airbus 330 9:00 827 
CZ 5140 Airbus 330  10:00 810 
MU 5105 Airbus 330  10:00 827 
CA 1832 Airbus 330  10:55 810 
MU 5107 Airbus 330  11:00 827 

Demand becomes more uncertain under competition. Passengers will overflow to other flights if 
their initial demand is unavailable; initial high fare demand will buy-down when lower class is 
available and initial low fare demand will buy-up when low-fare class closed. We define the former 
diversion of demand between flights’ horizontal diversion and the latter among classes’ vertical 
diversion. Besides,there still exists an oblique diversion between classes belonging to different 
flights. 
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In this paper, we study a single-leg, two-flight and two-fare class seat allocation problem 
between a single origin–destination pair. Booking requests arrive according to a random process and 
each customer requests only one seat.The competition and demand diversion are shown in Figure 
1.In the aviation market, airlines can acquire real-time information of the seat inventory and price 
with anaccepTable cost, so we study competing airlines engaging in a non-cooperative game with 
complete information. 

Flight A

Low Fare 
Class

High Fare 
Class

Flight B

Low Fare 
Class

High Fare 
Class

Initial demand for 
flight A

Initial demand for 
flight B

Overflow demand

Buy-upBuy-down
Buy-upBuy-down

� 
Figure 1. Demand Diversion between Two Flights and Two Classes under Competition 

Seat allocation is the crucial part of revenue management.Most of the research assumes that the 
market is monopolistic. These monopoly airlines use inventory control as a tool to allocate seats to 
different levels of demand optimallyto maximize the total expected revenue.Literature on seat 
allocation under competition is not so sufficient, and all the literature assumes that price is fixed, 
which is similar to general inventory competition model. Parlar(1988) employs game theory to 
analyze inventory management with demand substitution. He assumes that each retailer knows the 
substitution rate and demand density. Zhao and Atkins (2000) develop the model of inventory fora 
single class of two airlines under competition. Netessinand Shumsky (2005) examine the seat 
inventory control problem under both horizontal competition (two airlines compete for passengers 
on the same flight leg) and vertical competition (different airlines fly different legs on a 
multi-legitinerary). They provide a general sufficient condition underwhich a pure-strategy Nash 
equilibrium exists in these revenue management games. The analytical results demonstrate that 
more seats are protected for higher-fare passengers under horizontal competition comparing to 
monopoly single airline acts as a monopoly. However, under horizontal competition, the result is 
totally different. The lterature mentioned above focuses on inventory control policy for two flights, 
served single-leg.Jiang and Pang (2011) extend the model from single-leg to airline network. Our 
model settled in this paper is dynamic, and decision will be optimal to real-time. 

Recently, revenue management competition in both inventory and pricing has been paid more 
and more attention. In this paper, we aim at modeling the seat allocation problem with passenger 
horizontal and vertical diversions (it is not same to vertical competition in Netessin and Shumsky 
[2005]) under competition. Demands for the two fare classes arrive concurrently, which is closer to 
the truth. The issue is the correct timing of closing the low-fare class given his rival’s stopping 
region. 

Our model assumes that the decision rule is dynamic: the optimal region to close the low-fare 
class depends on the number of seats left and the rival’s strategy.An airline can adjust or decide 
whether to close the low fare in real time to maximize the total expected revenue (TER).Like static 
model, our optimal policy is threshold policy, which simplified the model and improved 
computational efficiency.The no-reopen assumption of low-fare class made our model more 
practical.Unlike the static model, the optimal policy is not fixed in advance; it is made dynamically 
according to the current situations and rival’s strategy to mitigate risk.Our contribution has 
established a model involving the horizontal and vertical diversion synchronously.  
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2. Program Description and Assumptions 
Suppose two airlines are offering direct flights between the same origin and destination, with 

departures and arrivals at similar times. We assume that other flights on this route are scheduled 
sufficiently far away in time so that they can be ignored. For simplicity, suppose that both flights 
have the same capacity and there are only two far classes available for passengers: low-fare class 
and high-fare class. Customers are segmented into low-fare and high fare fare, there will be a low 
fare demand. A customer’s reservation price is specific to every individual demands by their 
reservation prices: if his reservation price equals or exceeds the low fare and is less than the high 
and is confidential to the airlines. However, the air tickets'seller can distigusih the distribution of the 
reservation prices from the passangers’ preference. 

Supposing that two airlines with the same capacity C , two fare classes charged with prices 1r  
and 2r 1 2( )r r> , denoting the low fare price and the high fare price,respectively. Each customer has 
a reservation price v , and v is independent identical distribution (i.i.d), the cumulative distribution 
function is denoted by ( )F v , which is continuous and differentiable. To be simple we assume that

( )F v  is strictly increasing. The purchasing probability given price ir  is ( )Pr i iv r = 1- F(r )≥ .To 
simplify, Figure 2 is used to substitute for Figure 1. There are three types of passengers: type 1 and 
type 2 are respectively for flight A and flight B only; whereas type 3 is flexible and willing to take 
either of the two flights. Passengers of type 3 are flexible because they are indifferent between two 
flights as long as they can book a seat at the lower fare class they want. If fares of the two flights 
are equal, the proportions of three types of passenger flow are denoted by (0 1)i iα α< < , and

1iα =∑ . For convenience, we assume that the arrival process of all three types ofpassengers are 
homogeneous Poisson distribution and independent of each other. Letλ be the total arrival rate of 
the passengers, and i iλ α λ= ∗  be the arrival rate of type i  passengers. At the beginning of the sales 
horizon, both low-fare and high-fare classes are open to book. AP   and BP  are the lowest prices 
of currently available classes of flights A and B. When there comes a request of type 1 (or type 2), 
he will purchase flight A (or B) when his reservation price Av P≥  (or Bv P≥ ). When low-fare class 
is still available ( )A BP P= , the original demands for high-fare class will buy down with the 
probability downp , and if the low-fare class is closed(we assumed that low-fare class will not reopen 
once closed in later periods), then the original demands for low-fare class will buy up for high-fare 
class with the probability upp . If a passenger is type 3, he will purchase the lower fare flight by the 
rules as follows:  

Flight A

Low Fare 
Class

High Fare 
Class

Flight B

Low Fare 
Class

High Fare 
Class

Demand of type A Demand of type B

Buy-upBuy-down
Buy-upBuy-down

Demand of type C

A BP P=

A BP P>

A BP P<

 
Figure 2. Demand Diversions of Three Types of Passengers 

(1) A BP P≠ , and if his reservation price ( )A Bv P P≥ ∧ , ( ) min( , )A B A BP P P P∧ = , he will buy the 
lower fare flight;  
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(2) A BP P= , and if his reservation price ( )A Bv P and P≥ , he will book flight A with probability 

{ }3 Pr ( )A Bv P Pλ ∗ ≥ ∧ , and flight B with probability1 β− . 

3.The Basic Model with Horizontal Diversion Only 
In this section we analyze the basic model,which assumes that there is no vertical diversion of 

demand 0down upp p= =  

3.1 Formulation 

We Let N  be the total number of sale periods, and periods are indexed consecutively by 
periods remaining, i.e. period N is the starting period and period 0 is the ending period. At any 
period [ ,0)n N∈ , let ( )y n be the number of seats left at n . Our control policy is whether to close the 
low-fare class. Obviously, this should be based on ( )y n , the number of seats left, as well as n , the 
time left before departure. Thus, it is an optimal stopping problem. A stopping rule can be 
characterized by a stopping region *( )y n contained in{ }0,1,2, , [ ,0)C N∗ . 

The probability of type 1 customers arrival and choose the low-fare class of flight A is
{ }1 2 1Pr r v rλ ∗ ≤ ≤ , and the probability of high-fare class is { }1 1Pr v rλ ∗ ≥ . So as type 2 for flight B, 

the probability of choosinglow-fare classis { }2 2 1Pr r v rλ ∗ ≤ ≤  and choosing high-fare class is

{ }2 1Pr v rλ ∗ ≥ . Customers of type 3 are flexible and price sensitive; they will book the low-fare 
class if it is available whether their reservation prices are low or high. So the probability of type 3 
choosingthe lower fare flight A or B is { }3 Pr ( )A Bv P Pλ ∗ ≥ ∧ .  

Considering the arrival process and choice behavior of potential customers, we can get the 
effective demands for low-fare class and high-fare class of flight A and flight B, respectively, as 
follows: 

[ ]1 2 1 3 2 3 2( ) ( ) ( ) ( )
A B A B

n
AL (P <P ) (P P )P F r F r F r I F r Iλ λ λβ == ∗ − + ∗ ∗ ∗ ∗+ ∗         (1) 

1 1( )n
AHP F rλ= ∗                                                         (2) 

[ ]2 2 1 3 2 3 2( ) (1( ) ( ) ( ))
A B A B

n
BL (P P ) (P P )P F r F r F r I F r Iλ βλ λ> =+ − ∗= ∗ − + ∗ ∗ ∗ ∗    (3) 

2 1( )n
BHP F rλ= ∗                                                        (4) 

where {condition}I  is an indicator function, and {1
0

i f cond it ion i s t rue
ot her wi{cond it i eon } sI =  

Clearly, the difference of seat inventory control between monopoly and competitive markets is 
that demand for flight A or B is affected by not only its own seat availability but also by the other’s. 

Let ( , )A AF n y , ( , )B BF n y  be the maximal expected revenue from period n to 0 when the 
remaining seats on flight A and B is y ;here we assume that low-fare class is still open, then the 
dynamic programming equation of this problem is presented as follows: 

( ) ( ) ( )
( )

2 111 1

(1 )

1

1

n n
A A AL A A AH A A

n n
AL AH A A

F n, y P r F n , y P r F n , y

P P F n , y

= ∗ + − + ∗ +− −−      
+ − − ∗ − (5) 

( ) ( ) ( )
( )

2 111 1

(1 )

1

1

n n
B B BL A B BH A B

n n
BL BH A B

F n, y P r F n , y P r F n , y

P P F n , y

= ∗ + − + ∗ +− −−      
+ − − ∗ −        (6) 

Here the firstterm is the expected total revenue if a low-fare ticket is sold at period n , and the 
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second is the expected total revenue if a high-fare ticket is sold, and the third is the expected total 
revenue otherwise. 

Let ( , )A AG n y ( , )B BG n y be the expected revenue over n  to 0 with y seats left at n and low-fare 
class closed already by period n , so  

( ) ( ) ( )
( ) ( )

Pr

Pr
A B

A B

A A 1 3 (P P ) 1 1 A A

1 3 (P P ) 1 A

G n, y = ( + I )* r * r +G n -1, y -1

+ 1-( + I )* r * G n -1, y

λ β λ

λ β λ

=

=

*  


* 
 **

          (7) 

( ) ( ) ( )
( ) ( )

(1 ) Pr

(1 ) *Pr
A B

A B

B B 1 3 (P P ) 1 1 B B

1 3 (P P ) 1 B

G n, y = + I * r * r +G n -1, y -1

+ 1-( + I ) r * G n -1, y

λ β λ

λ β λ

=

=

 -*     
 -*  

*

*
      (8) 

The first item of the right-hand side means revenue gains when a ticket is sold at a high fare in 
period n , and the second item means revenue gains otherwise.

 Then the optimal stopping region *( )y n  can be characterized by 

( ) ( ){ }( ) max |A A A A A Ay n y G n, y F n, y∗ = ≥                    (10) 

( ) ( ){ }( ) max |B B B B B By n y G n, y F n, y∗ = ≥           (11) 

On the other hand, if ( ) ( )A Ay n y n∗≠ , ( ) ( )B By n y n∗≠ , ( ) ( )A A A AF n, y G n, y> , ( ) ( )B B B BF n, y G n, y> , 
it is optimal to keep the low-fare class open. 

3.2 Structure of optimal seat allocation policies  
Airlines decide whether to close the low-fare class at the beginning of each period n to 

maximize their total expected revenue (TER). They decideaccording to the current market states 
(seats left at period n ( , )A By y  on flights A and B) and forecast of demands arrival. They will 
increase the yield of a ticket and reduce one seat if passengers buy one; otherwise they will keep the 
seats for the next period. 

At any period ,(0 )n n N< < , airline will sell out 1 ticket at most, and the rest will be kept for the 
next period. Airline A (or B) has to decide whether to close the low-fare class or not. We divide 
situations into three kinds as follows based on seats left on two flights ( )A By , y . 

Case 1 A By = y = 0 ,If 0By = (or 0Ay = ) , seats are not available of flight B (or A), so let

BP = ∞ (or AP = ∞ ). There was no increase in revenue, so both airlines should closethe sale horizon, 
and ( ) ( )A BF n,0 = F n,0 = 0 . 

Case 2 (or )A B A By > 0, y = 0 y = 0, y > 0 , there are still seats left on flight A(or B) butno seats on 
flight B(or A), airline A(or B) decides to stop the low fare or not. All flexible passengers of type 3 
with reservation prices that exceed the given price will turn to flight A(or B), so the potential 
demand rate is 1 3( )λ λ+ or 2 3( )λ λ+ . 

We take airline A for example; it is similar to airline B.When low-fare class is still open on flight 
A, the TER expression is as follows, (12) 

( ) ( ) ( ) ( ){ } ( ) ( )
( ) ( ) ( )( ) ( )

2 1 2 2 1 1

1 2

Pr Pr Pr

*Pr

A A 1 3 A A

A A 1 3 A A

F n, y = + F n -1, y -1 F

+ F n -1, y -1 + 1- ( + * F n

r r r r r

r r -1, y

λλ λ

λ λ

*-*        

*   

* + + *

 
If low-fare class has closed and onlyhigh-fare classis open, the revenue will be 
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( ) ( ) ( )
( )( ) ( )*

A A 1 3 1 1 A A

1 3 1 A

G n, y = ( + )* F r * r +G n -1, y -1

+ 1-( + ) F r * G n -1, y

λ λ

λ λ

  

            (13) 

The optimal stopping region is ( ) ( ) ( )*
A A A A A Ay n = max{y |G n, y F n, y }≥  as monopoly market, 

otherwise keep low-fare class open. 
Case 3 A By > 0, y > 0 , there are still seats left on both airlines A and B, the optimal problems 

faced by airlines are when to close the low-fare class (we assume that low-fare class is still open at 
the beginning of period n ). Figure 3 shows that if airline B decides to stop low-fare class earlier 
and keeps more seats for high ( ) ( )* *

B Ay n y n> , flexible passengers will turn to airline A before A’s 
stopping region because AP  is lower until A BP P= , and vice-versa. 

We assume that both low-fare and high-fare classes are open at the beginning of period n on 
both flights A and B. Airlines can sell a ticket as low or high-fare class according to the demand 
arriving at period n . 

0

Flight A

Flight B

Flight A

Flight B

Flight A

Flight B

( )*
Ay n( )*

By n

( )*
Ay n ( )*

By n

( )*
Ay n ( )*

By n

A BP P= A BP P=

A BP P=A BP P=

A BP P=A BP P=

A BP P<

A BP P>1
A B(P P )I > =

1
A B(P P )I < =

1
A B(P P )I = = 1

A B(P P )I = =

1
A B(P P )I = = 1

A B(P P )I = =

1
A B(P P )I = =1

A B(P P )I = =

Both low and high fare classes open

High fare class open only

nN

 
Figure 3. Decision-making of Stopping Region 

The TER that airline A can obtainwith two fare classes open can be calculated by (5), and 
high-fare class open only by equation (6) 

We can get the optimal stopping region of airline A given airline B’s stopping region firstly by 
(10);similarly, the optimal stopping region of airline B can be calculated by equation (11). 

Proposition 1.Suppose once thelow-fare class is closed it will not reopen, given the game is the 
dynamic game of complete information between two airlines, Nash equilibrium in stopping regions
( ( ), ( ))A By n y n∗ ∗  exists Proof: From the above analysis, the expected revenue that airline A obtained 

( )A AF n, y  is relevant not only with the stopping region itself ( )Ay n∗  but also with its opponent’s 
stopping policy ( )By n∗ , and revenue of airline B depends on both A and B’s stopping policies. They 
want to gain maximum revenue by adjusting their policies.  

The optimal policy is to decide the stopping regions of airline A and B. Given the optimal 
stopping region for airline B is ( )By n∗ , we can get the optimal reaction of the stopping region for 
airline A is ( ) ( ){ }( ) max |A A A A A Ay n y G n, y F n, y∗ = > . Similarly, given the optimal stopping region 
for airline A is ( )Ay n∗ , the optimal reaction of the stopping region for airline B is 

( ) ( ){ }( ) max |B B B B B By n y G n, y F n, y∗ = > .   
If the stopping region’sstrategiesfortwo airlinesare mutuallyoptimal given the other’s strategy, in 

other words, either airlineA and B’s strategy is mutually optimal response to each other; the 
strategies are Nash equilibrium. Equilibrium strategy must be the extreme points where its expected 
revenue reaches the maximum given the opponent’s strategy. Nash equilibrium is ( ( ), ( ))A By n y n∗ ∗

. 

593



4. The extension model with vertical diversion  
In this section, we analyze the model with buy-up and buy-down, that means vertical diversion 

of demands. At the earlier periods of the sales horizon, both low-fare and high-fare classes are open 
to book.Some customers with reservation 1v r≥  (high fare demands) will buy-down with a 
probability when the low fare is available and the restrictions are accepTable. When low-fare class 
closed, customers with reservation 2 1r v r≤ ≤  (low fare demands) will buy-up with a probability. 

Demand rates from type 1 for low and high-fare classes of flight A are
{ } { }1 2 1 r 1 down* Pr r v r + P v r * pλ ≤ ≤ ≥    , and { }1 r 1 down* P v r * (1- p )λ ≥  when both classes are 

open. Passengers of type 3 are price sensitive as assumed above;they will buy a low-fare class when 
it is available,and the demand rate is { }

A B A B3 2 (P <P ) 3 2 (P =P )* Pr v r * I + * * Pr{v r }* Iλ β λ≥ ≥ . 
We can derive the extension model with both horizontal and vertical diversion of demands as 

follows, let ( )'
A AF n, y  be the revenue when low-fare class is still open: 

( ) ( ) ( )
( )

' ' ' ' '
2 1

' ' '

1 1

(1 ) 1

1 1n n
A A AL A A AH A A

n n
AL AH A A

F n, y P r F n , y P r F n , y

P P F n , y

   = ∗ + − + ∗ +− −−   
+ − − ∗ −      (14) 

where  

{ } { } { }
A B

A B

n '
AL 1 2 1 r 1 down 3 2 (P <P )

3 2 (P =P )

P = * Pr r v r + P v r * p + * Pr v r * I

+ * * Pr{v r }* I

 λ λ

β λ

≤ ≤ ≥ ≥  
≥  

{ }n '
AH 1 r 1 downP * P v r * (1- p )λ ≥=  

When the low-fare class is closed,the original demands for low-fare class will buy-up, and the 
demand rate for high-fare class from type 1 is { }1 2 1 upPr r v r * pλ * ≤ ≤ , from type 3 is 

{ } { }
A B3 (P =P ) 2 1 up r 1I Pr r v r * p + P v r β λ  ***   ≤ ≤ ≥  .And the expected revenue that airline A can get 

is as follows: 

( ) { } { } ( )
{ } { } ( )

' '
1

'

( 1

(1 ( ) 1

) 1

)
A B

A B

A A 1 3 (P =P ) 2 1 up r 1 A A

1 3 (P =P ) 2 1 up r 1 A A

G n, y I Pr r v r * p + P v r r G n , y

I Pr r v r * p

 

 + P v r G n , y

λ β λ

λ β λ

−  = + ***   ≤ ≤ ≥ * + −   
 + − + ***   ≤ ≤ ≥ * − 

(15)
 

Similarly for airline B, ( )'
B BF n, y is the expected revenue when both classes are open: 

( ) ( ) ( )
( )

' ' ' ' '
2 1

' ' '

1 1

(1 ) 1

1 1n n
B B BL B B BH B B

n n
BL BH B B

F n, y P r F n , y P r F n , y

P P F n , y

   = ∗ + − + ∗ +− −−   
+ − − ∗ −     (16) 

where

{ } { } { }2 (1 )
A B A B

n '
BL 2 1 r 1 down 3 2 (P P ) 3 2 (P =P )P = * Pr r v r + P v r * p + * Pr v r * I + * * Pr{v r }* Iλ λ β λ>≤ ≤ ≥ ≥ − ≥  

{ }2
n '

BH r 1 downP * P v r * (1- p )λ ≥=  

( ) { } { } ( )
{ } { } ( )

' '
1

'

2

2

( (1 ) 1

(1 ( (1 ) )) 1

) 1
A B

A B

B B 3 (P =P ) 2 1 up r 1 B A B

3 (P =P ) 2 1 up r 1 B B

G n, y I Pr r v r p + P v r r G n , y , y

I Pr r v r p + P v r G

 

 n , y

λ β λ

λ β λ

  = + − ∗ ∗ ∗ ≤ ≤ ∗ ≥ ∗ + −   
 + − + − ∗ ∗ ∗ ≤ ≤ ∗ ≥ ∗ − 

−

(17)
 

Nash equilibrium in stopping low-fare class ' '( ( ), ( ))A By n y n∗ ∗  exists,and meets the following 
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equations: 

( ) ( ){ }
( ) ( ){ }

'

' '

'

( ) max |
( ( ), ( ))

( ) max |

A A A A A A

A B

B B B B B B

y n y G n, y F n, y
y n y n

y n y G n, y F n, y

∗

∗ ∗

∗

= >
=

= >



       (18) 

Proposition 2.Given there are demand diversions of horizontal between airlines and vertical 
between classes, the optimal stopping points is earlier and the seats left are more than horizontal 
diversion only, ' '( ( ), ( )) ( ( ), ( ))A B A By n y n y n y n∗ ∗ ∗ ∗> . 

Proof:Keep both low-fare and high-fare classes open, when there is only horizontal diversion 

only, a ticket is sold as a low-fare class with a probability  
n
ALP , and as a high-fare class with 

probability
n
AHP . When incorporated vertical diversion of demand exists between two classes, the 

probability of selling out a ticket atlow-fare classis n '
ALP ,high-fare class n '

AHP . Obviously,
,n ' n n ' n

AL AL AH AHP P P P> < . That means, when there are both horizontal and vertical diversions of 
demand andthere are more requests for the low-fare class and less for the high-fare class, with 
seatssold at low price more than horizontal diversion only, the expected revenue will decrease. So 
airlines prefer stopping selling low-fare class early and keeping more seats for high-fare class. Closing low-fare class and keeping only high-fare class open, purchase rate for high-fare class is 

( )Pr
A B1 3 (P P ) 1( + I )* v rλ β λ =* ≥*  when there is horizontal diversion only, and the rate is 

{ } { }( )
A B1 3 (P =P ) 2 1 up r 1I Pr r v r * p + P v rλ β λ  + ***   ≤ ≤ ≥ with bi-directional diversions. The latter is 

larger than the former. When low-fare class closed, the original low fare demands buy up to 
high-fare class, which will enhance the expected revenue.Airlines will stop selling low-fare class 
earlier and keep more seats for high fare to maximize their revenue. 

We can prove the proposition by Littlewood’s rule too. Littlewood’s rule says keep the discount 

class open if and only if { }( ,0)2 1r r Pr H n y∗≥ ≥ and { }( ,0) 2

1

rPr H n y
r

≥ ≤  . 

Where y  is the number of seats left at period n , and { }( ,0)Pr H n y≥ is the probability of 
more than y passengers arriving between period n and 0. Because the probability of a passenger 
arriving at each unit period is larger than before, y should be larger. 

5. Numerical Examples 

For computational purposes, we split the horizon into N  periods of equal length. N is large 
enough so that no more than one demand can occur in one period. Usually, the dilemma that 
dynamic inventory control models face is computational complexity, especially when N  and/or 
C  are/is large. But in our model, the assumption “no-reopen” of low-fare class simplifies 
computational burden greatly, and the threshold policy decreases the computational complexity 
greatly. It can be solved with a personal computer efficiently when computing, given the stopping 
region of one airline and to determine the other airline’s optimal strategy. 

The algorithms are efficient(see Appendix), and computational results can be calculatedin a few 
minutes with a personal computerwhen we set 5000, 100A BN C C= = = . We focus more on the 
relationships between different variables; to describe the relationships completely, numerical 
examples are simplified with 100, 10A BN C C= = = . Price of low-fare and high-fare class is 

2 100r = and 1 100r = , respectively.Demands arrival rate is 22 / Nλ = , the ratios of type 1, type 2 
and type 3 are 1 2 3( , , ) (0.2,0.3,0.5)α α α = , and 1 1 2 2 3 3, ,λ α λ λ α λ λ α λ= ∗ = ∗ = ∗ . Probabilities 
of reservation prices exceeding the given prices are { }2 2( ) Pr 0.8,F r v r= ≥ =
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{ }1 1( ) Pr 0.3F r v r= ≥ = . Passengers of type 3 choose airline A at probability 0.4β =  when 

A BP P= . The probability that original demands for high-fare class buy down is denoted by 
1

2

r- *( -1)
r

downp = 1- e
θ

, where
down

-ln0.5
frat5 -1

θ = , and downfrat5  is the ratio of the prices when the 

probability of buy-down is 50%. Buy-up probability is 
1

2
( 1)r
r

upp = e
δ− ∗ −

, where
up

-ln0.5
frat5 -1

δ = , and 

upfrat5 is the ratio of the prices when the probability of buy-up is 50%. For simplicity, let 
1 0.5up downp = p− = . 

Determine the stopping region 
The optimal strategy to stop low-fare class can be calculated by a matlab program based on the 

model and algorithm derived above.Stopping lines in Figure 4 are an optimal reaction strategy 
given the other airline’s stopping strategy. The upper two lines are stopping lines incorporatedinto 
horizontal and vertical diversions of demand, and seats left are more than these considering 
horizontal diversion only, left on airline B more than airline A given the same stopping point. 

 
Figure 4. The Optimal Reaction Strategy Given the Rival’s Policy 

To see relations between stopping region and variables, we kept changing the value of the 
variables. Table 2 shows the strategy affected by coefficient β , β  is changed from 0 to 1, the 
larger β  is , the more passengers will purchase seats on flight A when prices are equal. Stopping 
region of flight A ( )Ay n∗  is nondecreasing inβ  and ( )By n∗  is nonincreasing in β . That means 
the airline should stop low-fare class earlier and keep more seats for high-fare class if passengers 
prefer it, excluding price factors 

Table 2. Relation of Stopping Regions and β   
 

Table 3. Relation of Stopping Regions and 
1 2 3( , , )α α α  

Flight A Flight B

(0.4, 0.6, 0.0)

(0.3,0.45,0.25)

(0.2, 0.3, 0.5)

(0.1,0.15,0.75)

(0.0, 0.0, 1.0)

3       5

2       4

2       4

2       3

1       3

1 2 3( , , )α α α

(0.0, 0.5, 0.5)

(0.1, 0.4, 0.5)

(0.2, 0.3, 0.5)

(0.3, 0.2, 0.5)

(0.4, 0.1, 0.5)

(0.5, 0.0, 0.5)

0       6

1       5

2       4

3       3

4       2

5       1

β =

  

Flight A Flight B
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1          5

1          4

2          4

2          4

2          3
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3          3

3          2

4          2

4          2    
The ratio of flexible customers and preference coefficient remains unchanged, 3 0.5α = 0.4β =

in the upper part of Table 3, the ratios of type 1 and type 2 keep changing. The result shows that the 
stopping region is increasing in the ratio of their loyal customers. In the lower part of Table 3, let 
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0.4β = be constant, 3α  is changed from 0 to 1 and the relative proportion of type 1 and type 2 is 
held;the more flexible the customers the fewer seats kept for the high-fare class. 

Stopping the region of Airline A is nondecreasing with the ratio of type 1 (here can be called 
loyal customers of airline A) 1α andthe ratioβ (flexible customers of airline A), but the changing 
rate caused by 1α is larger than that caused by β . Airline should increase the proportion of loyal 
customers by improving competitiveness and attract more flexible customers by pricing policy. 

Total expected revenue 
In this section, we will discuss the total expected revenue trends with different variables. Take 

airline A, for example (same to airline B); we considered three states of stopping region given by 
Airline B: (0) 0, (40) 4, (100) 10B B By y y∗ ∗ ∗= = = . There are three families of curves in figure 3, and 
solid, dash and dot curves represent the maximum TER with (0) 0,By∗ = (40) 4,By∗ =

(100) 10By∗ = ,respectively. Each family of curves concludes eleven lines, which means there are 0 to 
10 seats left from bottom to up at each period. Conclusions can be drawn from the TER is 
decreasing with time reduction and increasing with seats left. The value of seats on flights is 
perishable and decreasing with time. At the beginning of the sales period, more seats can produce 
more revenue.In another side,the figure shows that,when it comes to a point, the revenues produced 
by different seatsare approximately equal. Airlines are encouraged to open low-fare class at the 
early sale periods. 

(1) Airline A can get more revenue by adjusting its stopping region according to the strategy of 
Airline B, the earlier Airline B closeslow-fare class and the more seats kept for high-fare class, the 
more TER airline A gains by setting the optimal reaction strategy.We can see dot curves (TER given 

(100) 10By∗ = , that means there is no low-fare class on flight B) on the top of dash curves (TER 
given (40) 4By∗ = )and dash curves (TER given (0) 0By∗ = , low-fare class will keep open the whole 
sales period ) on the top of solid curves. 

(2) The gaps between everytwo adjacent lines of the same style represent the expected marginal 
revenue (MER) ( , ) ( , 1)F n y F n y− − . The MER is decreasing when departure time approaches and 
is decreasing with the number of seats left at period n . So suppliers will sell the seats at a lower 
price when there are many seats still left with sales period stopping soon. 

(3) MER of Airline A increasesaccording to the strategy of Airline B; the earlier stopping period 
and the more seats kept for high-fare class, the more the MER. 

6. Conclusions 
The goal of this paper is to analyze the optimal seat allocation policy for the two competing 

flights, while there are horizontal and vertical diversions of demands caused by competition.We 
have established a dynamic model for competing airlines engaging in a noncooperative game with 
complete information. Nash equilibrium of the optimal stopping region exists for both basic the 
model and the extension model. We have shown that the optimal policy is a threshold policy, which 
is relatively easy to determine and implement. 

Compared with the existing literature, our dynamic model requires the demand of a whole 
market and the ratios of loyal customers and flexible customers, which can be accessed easily 
through historical data.We analyzed the demand diversions influencing revenue thoroughly; 
algorithm and computational speed is high-efficiency. 

The contribution of this paper is to consider the dynamic seat allocation problem with more than 
two flights and two classes completion situation to derivea dynamic model for a multilateral game. 
Furthermore, it is more interesting to get further research of inventory analysis of the revenue 
management of train tickets comparing to air tickets. We aim to find the most optimized model of 
air tickets and train tickets sales to assure that the best sales optimization model can be reached in 
the perishable air and train tickets’ revenue management. 
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